Abstract

Hexachlorophene (HCP), pentachlorophenol (PCP), 2,4,5-trichlorophenol (2,4,5-TCP) and 2,4,6-trichlorophenol (2,4,6-TCP) all hemolyzed washed human erythrocytes and inhibited acetylcholinesterase (AchE) activities in erythrocyte membrane. HCP was much more potent in either effect than any other compound examined. The inhibition of AchE activities by HCP was reversed on adding albumin. The dose-response curves by HCP and PCP were sigmoidal, indicating cooperative inhibition, while those by 2,4,5-TCP and 2,4,6-TCP were not. Furthermore, the cooperativity of the inhibition by HCP was greater than by PCP. Differing from that by PCP, the cooperativity of inhibition increased depending on the temperature (13, 25, 37 degrees C) and decreased when the membrane was treated with Triton X-100. The cooperativity was also decreased in the presence of albumin. On a Scatchard plot analysis, erythrocyte membranes appeared to have multiple binding sites of different affinities for HCP; binding of HCP to the low affinity site [dissociation constant (Kd) 4.7 x 10(-5) M] seemed to be responsible for the observed cooperative inhibition of AchE activities. Neither neostigmine nor fenitrothion altered the cooperativity. HCP seems to be the most potent cooperative inhibitor of AchE in human erythrocyte membranes known to date. HCP may be useful to examine AchE and milieu in human erythrocyte membranes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.