Abstract

This article addresses the problem of cooperative object transportation for multiple underwater vehicle manipulator systems (UVMSs) in a constrained workspace with static obstacles, where the coordination relies solely on implicit communication arising from the physical interaction of the robots with the commonly grasped object. In this article, we propose a novel distributed leader-follower architecture, where the leading UVMS, which has knowledge of the object's desired trajectory, tries to achieve the desired tracking behavior via an impedance control law, navigating in this way, the overall formation toward the goal configuration while avoiding collisions with the obstacles. On the other hand, the following UVMSs estimate locally the object's desired trajectory via a novel prescribed performance estimation law and implement a similar impedance control law that achieves tracking of the desired trajectory despite the uncertainty and external disturbance in the object and the UVMS dynamics, respectively. The feedback relies on each UVMS's force/torque measurements and no explicit data is exchanged online among the robots, thus reducing the required communication bandwidth and increasing robustness. Moreover, the control scheme adopts load sharing among the UVMSs according to their specific payload capabilities. Finally, various simulation studies clarify the proposed method and verify its efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.