Abstract

Cooperative guidance strategy for multiple hypersonic gliding vehicles system with flight constraints and cooperative constraints is investigated. This paper mainly cares about the coordination of the entry glide flight phase and driving-down phase. Different from the existing results, both the attack time and the attack angle constraints are considered simultaneously. Firstly, for the entry glide flight phase, a two-stage method is proposed to achieve the rapid cooperative trajectories planning, where the control signal corridors are designed based on the quasi-equilibrium gliding conditions. In the first stage, the bank angle curve is optimized to achieve the attack angle coordination. In the second stage, the angle of attack curve is optimized to achieve the attack time coordination. The optimized parameters can be obtained by the secant method. Secondly, for the driving-down phase, the cooperative terminal guidance law is designed where the terminal attack time and attack angle are considered. The guidance law is then transformed into the bank angle and angle of attack commands. The cooperative guidance strategy is summarized as an algorithm. Finally, a numerical simulation example with three hypersonic gliding vehicles is provided for revealing the effectiveness of the acquired strategy and algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call