Abstract

Distributed resource allocation is a very important and complex problem in emerging horizontal dynamic cloud federation (HDCF) platforms, where different cloud providers (CPs) collaborate dynamically to gain economies of scale and enlargements of their virtual machine (VM) infrastructure capabilities in order to meet consumer requirements. HDCF platforms differ from the existing vertical supply chain federation (VSCF) models in terms of establishing federation and dynamic pricing. There is a need to develop algorithms that can capture this complexity and easily solve distributed VM resource allocation problem in a HDCF platform. In this paper, we propose a cooperative game-theoretic solution that is mutually beneficial to the CPs. It is shown that in non-cooperative environment, the optimal aggregated benefit received by the CPs is not guaranteed. We study two utility maximizing cooperative resource allocation games in a HDCF environment. We use price-based resource allocation strategy and present both centralized and distributed algorithms to find optimal solutions to these games. Various simulations were carried out to verify the proposed algorithms. The simulation results demonstrate that the algorithms are effective, showing robust performance for resource allocation and requiring minimal computation time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call