Abstract

Escape from cellular senescence induction is a potent mechanism for chemoresistance. Cellular senescence can be induced in breast cancer cell lines by the removal of estrogen signaling with tamoxifen or by the accumulation of DNA damage induced by the chemotherapeutic drug doxorubicin. Long term culturing of the hormone-sensitive breast cancer cell line MCF-7 in doxorubicin (MCF-7/DoxR) reduced the ability of doxorubicin, but not tamoxifen, to induce senescence. Two pathways that are often upregulated in chemo- and hormonal-resistance are the PI3K/PTEN/Akt/mTOR and Ras/Raf/MEK/ERK pathways. To determine if active Akt-1 and Raf-1 can influence drug-induced senescence, we stably introduced activated ΔAkt-1(CA) and ΔRaf-1(CA) into drug-sensitive and doxorubicin-resistant cells. Expression of a constitutively-active Raf-1 construct resulted in higher baseline senescence, indicating these cells possessed the ability to undergo oncogene-induced-senescence. Constitutive activation of the Akt pathway significantly decreased drug-induced senescence in response to doxorubicin but not tamoxifen in MCF-7 cells. However, constitutive Akt-1 activation in drug-resistant cells containing high levels of active ERK completely escaped cellular senescence induced by doxorubicin and tamoxifen. These results indicate that up regulation of the Ras/PI3K/PTEN/Akt/mTOR pathway in the presence of elevated Ras/Raf/MEK/ERK signaling together can contribute to drug-resistance by diminishing cell senescence in response to chemotherapy. Understanding how breast cancers containing certain oncogenic mutations escape cell senescence in response to chemotherapy and hormonal based therapies may provide insights into the design of more effective drug combinations for the treatment of breast cancer.

Highlights

  • Signal transduction cascades downstream of epidermal growth factor (EGF) receptor (EGFR) isoforms (e.g., EGFR & HER2) have been associated with breast cancer development and resistance to anticancer agents [1]

  • We first examined the ability of doxorubicin and 4 hydroxy-tamoxifen (4HT) to induce senescence in p53 wild type (WT) and estrogen receptor (ER) positive MCF7 breast cancer cells [2,3,5,99,100]

  • We determined the effects of the chemotherapeutic drug doxorubicin and the hormonal drug tamoxifen (4HT) on the induction of cellular senescence in MCF-7 and derivative cell lines which varied in their levels of activated Akt-1 or Raf-1 expression

Read more

Summary

Introduction

Signal transduction cascades downstream of epidermal growth factor (EGF) receptor (EGFR) isoforms (e.g., EGFR & HER2) have been associated with breast cancer development and resistance to anticancer agents [1]. Among the signaling pathways downstream of these receptors, the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/ mTOR pathways have been shown to regulate apoptosis and their deregulation is often implicated in malignant transformation [2,3,4,5,6,7,8,9]. Phosphatidylinositol (PI) (3,4)P2 and PI(3,4,5)P3 are produced by class 1A PI3Ks and recruit phosphoinositide dependent kinase-1 (PDK1) as well as Akt isoforms to the plasma membrane by interacting with their pleckstrin homology (PH) domains [13,14,15,16,17]. Activation of PDK1 and Akt by class 1A PI3Ks is negatively regulated by phosphatase and tensin homologue deleted on chromosome ten (PTEN) [4,6,8,16,20,21]. There are complex interactions with the p53, PI3K/ PTEN/Akt/mTOR pathways which determine whether senescence, quiescence or autophagy occurs in response to DNA damaging drugs [12, 15, 23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call