Abstract

In this work, a novel three-dimensional (3D) hollow nickel-cobalt layered double hydroxide (NiCo-LDH) was synthesized using zeolitic imidazole framework-67 (ZIF-67) as a template, and then utilized to functionalize molybdenum disulfide (NiCo-LDH/MoS2) via electrostatic force. Flame retardant thermoplastic polyurethane (TPU) composites were prepared by the melt blending method. Compared to pure TPU, NiCo-LDH/MoS2 filled TPU composite was endowed with a decrease of 30.9% and 55.7% of the peak heat release rate (PHRR) and the peak smoke production rate (PSPR), respectively. Furthermore, the addition of NiCo-LDH/MoS2 can significantly improve the thermal stability and char yield of the TPU composite. The catalytic carbonization effect and dilution effect of NiCo-LDH, and the barrier effect of MoS2 nanosheets enable TPU composites with excellent flame retardancy and toxic gas suppression ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call