Abstract

BackgroundMany conventional chemotherapeutic drugs are known to be involved in DNA damage, thus ultimately leading to apoptosis of leukemic cells. However, they fail to completely eliminate leukemia stem cells (LSCs) due to their higher DNA repair capacity of cancer stem cells than that of bulk cancer cells, which becomes the root of drug resistance and leukemia recurrence. A new strategy to eliminate LSCs in acute myeloid leukemia (AML) is therefore urgently needed.ResultsWe report that a low-dose chidamide, a novel orally active benzamide-type histone deacetylase (HDAC) inhibitor, which selectively targets HDACs 1, 2, 3, and 10, could enhance the cytotoxicity of DNA-damaging agents (daunorubicin, idarubicin, and cytarabine) in CD34+CD38− KG1α cells, CD34+CD38− Kasumi cells, and primary refractory or relapsed AML CD34+ cells, reflected by the inhibition of cell proliferation, induction of apoptosis, and increase of cell cycle arrest in vitro. Mechanistically, these events were associated with DNA damage accumulation and repair defects. Co-treatment with chidamide and the DNA-damaging agent IDA gave rise to the production of γH2A.X and inhibited posttranslationally but not transcriptionally the repair gene of ATM, BRCA1, and checkpoint kinase 1 (CHK1) and 2 (CHK2) phosphorylation. Finally, the combination of chidamide and IDA initiated caspase-3 and PARP cleavage, but not caspase-8 and caspase-9, and ultimately induced CD34+CD38− KG1α cell apoptosis. Further analysis of AML patients’ clinical characteristics revealed that the ex vivo efficacy of chidamide in combination with IDA in primary CD34+ samples was significantly correlated to peripheral blood WBC counts at diagnosis, while LDH levels and karyotype status had no effect, indicating that the combination regimen of chidamide and IDA could rapidly diminish tumor burden in patients with R/R AML.ConclusionsThese findings provide preclinical evidence for low-dose chidamide in combination with chemotherapeutic agents in treating recurrent/resistant AML as an alternative salvage regimen, especially those possessing stem and progenitor cells.

Highlights

  • Many conventional chemotherapeutic drugs are known to be involved in Deoxyribonucleic acid (DNA) damage, leading to apoptosis of leukemic cells

  • Low-dose chidamide enhanced cytotoxicity of chemotherapy agents in leukemia stem-like cells To explore whether low-dose chidamide might influence the cytotoxicity of chemotherapy agents in leukemia stem cell-like cells (LSC-like cells), we investigated the anti-proliferative activities of IDA, DNR, or Ara-C alone or in combination with 0.75 μM chidamide in CD34 +CD38− KG1α cells by CCK-8 assay at 24, 48, and 72h treatments

  • The P values were all less than 0.05 except treatment with chidamide plus Ara-C for 24 h (Fig. 1b and Table 2). These results indicated that whereas chemotherapy agents themselves were active against acute myeloid leukemia stem-like cell lines, combined administration with non-toxic concentrations of chidamide (e.g., 0.75 μM) remarkably potentiates the cytotoxicity of chemotherapy agents, primarily via inhibition of cell proliferation in a dose- and time-dependent manner

Read more

Summary

Introduction

Many conventional chemotherapeutic drugs are known to be involved in DNA damage, leading to apoptosis of leukemic cells. They fail to completely eliminate leukemia stem cells (LSCs) due to their higher DNA repair capacity of cancer stem cells than that of bulk cancer cells, which becomes the root of drug resistance and leukemia recurrence. A new strategy to eliminate LSCs in acute myeloid leukemia (AML) is urgently needed. HDAC inhibitors have emerged as a potent and promising strategy for the treatment of leukemia via inducing differentiation and apoptosis in tumor cells [5]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.