Abstract

The outage probability is an important performance measure for cooperative diversity schemes. However, in mobile environments, the outage probability does not completely describe the behavior of cooperative diversity schemes since the mobility of the involved nodes introduces variations in the channel gains. As a result, the capacity outage events are correlated in time and second-order statistical parameters of the achievable information-theoretic capacity such as the average capacity outage rate (AOR) and the average capacity outage duration (AOD) are required to obtain a more complete description of the properties of cooperative diversity protocols. In this paper, assuming slow Rayleigh fading, we derive exact expressions for the AOR and the AOD of three well-known cooperative diversity protocols: variable-gain amplify-and-forward, decode-and-forward, and selection decode-and-forward relaying. Furthermore, we develop asymptotically tight high signal-to-noise ratio (SNR) approximations, which offer important insights into the influence of various system and channel parameters on the AOR and AOD. In particular, we show that on a double-logarithmic scale, similar to the outage probability, the AOR asymptotically decays with the SNR with a slope that depends on the diversity gain of the cooperative protocol, whereas the AOD asymptotically decays with a slope of -1/2 independent of the diversity gain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.