Abstract

Multi-hop coverage extension can be utilized as a feasible approach to facilitating uncovered users to get Internet service in public area WLANs. In this paper we introduce a relay-union network (RUN), which refers to a public area WLAN in which users often wander in the same area and have the ability to provide data forwarding services for others. We develop a RUN framework to model the cost of providing forwarding services and the utility obtained by gaining services. The objective of the RUN is to maximize the total Quality of Cooperation (QoC) of users in the RUN. Two optimal bandwidth allocation schemes are proposed for both free and dynamic bandwidth demand models. To make our scheme more pragmatic, we then consider a more practical scenario in which the bandwidth capacity of the relays and the minimum demand of the clients are bounded. We prove that the problems under both the single relay and the multi-relay scenario are NP-hard. Three heuristic algorithms are proposed to deal with bandwidth allocation and relay-client association. We also propose a distributed signaling protocol and divide the centralized MRMC algorithm into three distributed ones to better adapt for real network environment. Finally, extensive simulations demonstrate that our RUN framework can significantly improve the efficiency of cooperation in the long term.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.