Abstract
AbstractThis paper addresses the problem of cooperative path‐following of multiple autonomous vehicles. Stated briefly, the problem consists of steering a group of vehicles along specified paths while keeping a desired spatial formation. For a given class of autonomous surface vessels, it is shown how Lyapunov‐based techniques and graph theory can be brought together to design a decentralized control structure, where the vehicle dynamics and the constraints imposed by the topology of the inter‐vehicle communication network are explicitly taken into account. To achieve path‐following for each vehicle, a nonlinear adaptive controller is designed that yields convergence of the trajectories of the closed‐loop system to the path in the presence of constant unknown ocean currents and parametric model uncertainty. The controller derived implicitly compensates for the effect of the ocean current without the need for direct measurements of its velocity. Vehicle cooperation is achieved by adjusting the speed of each vehicle along its path according to information exchanged on the positions of a subset of the other vehicles, as determined by the communication topology adopted. Global stability and convergence of the closed‐loop system are guaranteed. Illustrative examples are presented and discussed. Copyright © 2009 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.