Abstract

This paper presents a new cooperative control strategy for dynamic positioning of multiple surface vessels subject to unknown time-varying environmental disturbances and input saturation. The vessels are assumed interconnected through a directed topology rather than bidirectional. Two control objectives are considered in this paper. The first one is to make these vessels track desired positions and headings, and the other control objective is to hold the desired formation. For these purposes, we propose a cooperative control which consists of finite-time disturbance observer, auxiliary dynamic system and dynamic surface control technique. A nonlinear finite-time observer is developed to estimate unknown time-varying disturbance. To tackle the input saturation problem, an auxiliary dynamic system is constructed. It is also proved that all signals in the closed-loop control system converge to a small neighborhood of equilibrium state via Lyapunov analysis. Simulation results are given to validate the effectiveness of the proposed control strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call