Abstract
This paper deals with the problem of environmental monitoring by developing an event-triggered finite-time control scheme for mobile sensor networks. The proposed control scheme can be executed by each sensor node independently and consists of two parts: one part is a finite-time consensus algorithm while the other part is an event-triggered rule. The consensus algorithm is employed to enable the positions and velocities of sensor nodes to quickly track the position and velocity of a virtual leader in finite time. The event-triggered rule is used to reduce the updating frequency of controllers in order to save the computational resources of sensor nodes. Some stability conditions are derived for mobile sensor networks with the proposed control scheme under both a fixed communication topology and a switching communication topology. Finally, simulation results illustrate the effectiveness of the proposed control scheme for the problem of environmental monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.