Abstract

This paper presents a new cooperative coevolutionary algorithm (CCA) for power system unit commitment. CCA is an extension of the traditional genetic algorithm (GA) which appears to have considerable potential for formulating and solving more complex problems by explicitly modeling the coevolution of cooperating species. This method combines the basic ideas of Lagrangian relaxation technique (LR) and GA to form a two-level approach. The first level uses a subgradient-based stochastic optimization method to optimize Lagrangian multipliers. The second level uses GA to solve the individual unit commitment sub-problems. CCA can manage more complicated time-dependent constraints than conventional LR. Simulation results show that CCA has a good convergent property and a significant speedup over traditional GAs and can obtain high quality solutions. The "curse of dimensionality" is surmounted, and the computational burden is almost linear with the problem scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.