Abstract

Over the last decade, mobile Adhoc networks have expanded dramatically in popularity, and their impact on the communication sector on a variety of levels is enormous. Its uses have expanded in lockstep with its growth. Due to its instability in usage and the fact that numerous nodes communicate data concurrently, adequate channel and forwarder selection is essential. In this proposed design for a Cognitive Radio Cognitive Network (CRCN), we gain the confidence of each forwarding node by contacting one-hop and second level nodes, obtaining reports from them, and selecting the forwarder appropriately with the use of an optimization technique. At that point, we concentrate our efforts on their channel, selection, and lastly, the transmission of data packets via the designated forwarder. The simulation work is validated in this section using the MATLAB program. Additionally, steps show how the node acts as a confident forwarder and shares the channel in a compatible method to communicate, allowing for more packet bits to be transmitted by conveniently picking the channel between them. We calculate the confidence of the node at the start of the network by combining the reliability report for the first hop and the reliability report for the secondary hop. We then refer to the same node as the confident node in order to operate as a forwarder. As a result, we witness an increase in the leftover energy in the output. The percentage of data packets delivered has also increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call