Abstract

The activation of aziridines typically involves the use of strong Lewis acids or transition metals, and methods relying on weak interactions are rare. Herein, we report that cooperative chalcogen bonding interactions in confined sites can activate sulfonyl-protected aziridines. Among the several possible distinct bonding modes, our experiments and computational studies suggest that an activation mode involving the cooperative Se···O and Se···N interactions is in operation. The catalytic reactions between weakly bonded supramolecular species and nonactivated alkenes are considered as unfavorable approaches. However, here we show that the activation of aziridines by cooperative Se···O and Se···N interactions enables the cycloaddition of weakly bonded aziridine-selenide complex with nonactivated alkenes in a catalytic manner. Thus, weak interactions can indeed enable these transformations and are an alternative to methods relying on strong Lewis acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.