Abstract

Photoelectrochemical water splitting via solar energy consumption is recognized as a strategy to address fossil resources and global warming concerns. Here, we reveal the co-catalytic effect of ZrO2 and Bi2S3 nanoparticles on nanostructured bismuth oxide (Bi2O3) electrodes synthesized by electrochemical deposition and an in-situ photoelectrochemical transformation process to fabricate heterostructured Bi2S3/Zr-Bi2O3 electrodes. The cooperative interaction between ZrO2 and Bi2S3 nanoparticles leads to a 12-fold enrichment in Bi2O3 electrode photocurrent density. The cooperation between the above features has considerably reduced the photocurrent onset potential, and improved the separation of charge carriers and optical features of the Bi2O3:Zr/Bi2S3 electrodes resulting in attaining an applied bias photon-to-current efficiency (ABPE) of 1.22 %. Through these examinations, it is possible to create a variety of nanostructured electrode films with adjustable optical and electronic features for solar cells, electrochemical energy storage, and PEC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call