Abstract

We describe cooperative bimetallic catalysis that enables regio-/stereodivergent asymmetric α-allylations of aldimine esters. By employing Et3 B as the key activator, racemic allylic alcohols can be directly ionized to form Pd or Ir-π-allyl species in the presence of achiral Pd or chiral Ir complexes, respectively. The less or more substituted allylic termini of the metal-π-allyl species are amenable to nucleophilic attack by the chiral Cu-azomethine ylide, the formation of which is simultaneously facilitated by Et3 B, affording α-quaternary α-amino acids with high regioselectivity and excellent stereoselectivity. The use of readily available allylic alcohols as electrophilic precursors represents an improvement from an environmental and atom/step economy perspective. Computational mechanistic studies reveal the crucial role of the Et3 B additive and the origins of stereo- and regioselectivities by analyzing steric effects, dispersion interactions, and frontier orbital population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.