Abstract
Inspired by natural metalloenzymes that efficiently catalyze a variety of transformations, chemists have developed large numbers of dinuclear transition-metal complexes with extraordinary properties and reactivity patterns. For main-group element compounds, however, metal-metal cooperativity is much less explored. Here we present the synthesis and characterization of a room-temperature-stable compound with two separated two-coordinated gallium(I) centers possessing both a lone pair of electrons and a vacant orbital, reminiscent of singlet carbenes. This species displays enhanced reactivity compared to its mononuclear counterpart due to bimetallic cooperativity that allows for the facile activation of strong C-F bonds across the gallium-gallium bond. Two mechanistic scenarios of the cooperative bond activation have been identified by DFT and DLPNO-CCSD(T) calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.