Abstract

AbstractTo support the concurrent design processes of mechatronic subsystems, unified mechatronics modeling and cooperative body–brain coevolutionary synthesis are developed. In this paper, both body-passive physical systems and brain-active control systems can be represented using the bond graph paradigm. Bond graphs are combined with genetic programming to evolve low-level building blocks into systems with high-level functionalities including both topological configurations and parameter settings. Design spaces of coadapted mechatronic subsystems are automatically explored in parallel for overall design optimality. A quarter-car suspension system case study is provided. Compared with conventional design methods, semiactive suspension designs with more creativity and flexibility are achieved through this approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.