Abstract
Cellulose, chitin and peptidoglycan are major long-chain carbohydrates in living organisms, and constitute a substantial fraction of the biomass. Characterization of the biochemical basis of dynamic changes and degradation of these β,1-4-linked carbohydrates is therefore important for both functional studies of biological polymers and biotechnology. Here, we investigated the functional role of multiplicity of the carbohydrate-binding lysin motif (LysM) domain that is found in proteins involved in bacterial peptidoglycan synthesis and remodelling. The Bacillus subtilis peptidoglycan-hydrolysing NlpC/P60 D,L-endopeptidase, cell wall-lytic enzyme associated with cell separation, possesses four LysM domains. The contribution of each LysM domain was determined by direct carbohydrate-binding studies in aqueous solution with microscale thermophoresis. We found that bacterial LysM domains have affinity for N-acetylglucosamine (GlcNac) polymers in the lower-micromolar range. Moreover, we demonstrated that a single LysM domain is able to bind carbohydrate ligands, and that LysM domains act additively to increase the binding affinity. Our study reveals that affinity for GlcNAc polymers correlates with the chain length of the carbohydrate, and suggests that binding of long carbohydrates is mediated by LysM domain cooperativity. We also show that bacterial LysM domains, in contrast to plant LysM domains, do not discriminate between GlcNAc polymers, and recognize both peptidoglycan fragments and chitin polymers with similar affinity. Finally, an Ala replacement study suggested that the carbohydrate-binding site in LysM-containing proteins is conserved across phyla.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.