Abstract

PurposeRadiological reporting is transitioning to quantitative analysis, requiring large-scale multi-center validation of biomarkers. A major prerequisite and bottleneck for this task is the voxelwise annotation of image data, which is time-consuming for large cohorts. In this study, we propose an iterative training workflow to support and facilitate such segmentation tasks, specifically for high-resolution thoracic CT data. MethodsOur study included 132 thoracic CT scans from clinical practice, annotated by 13 radiologists. In three iterative training experiments, we aimed to improve and accelerate segmentation of the heart and mediastinum. Each experiment started with manual segmentation of 5–25 CT scans, which served as training data for a nnU-Net. Further iterations incorporated AI pre-segmentation and human correction to improve accuracy, accelerate the annotation process, and reduce human involvement over time. ResultsResults showed consistent improvement in AI model quality with each iteration. Resampled datasets improved the Dice similarity coefficients for both the heart (DCS 0.91 [0.88; 0.92]) and the mediastinum (DCS 0.95 [0.94; 0.95]). Our AI models reduced human interaction time by 50 % for heart and 70 % for mediastinum segmentation in the most potent iteration. A model trained on only five datasets achieved satisfactory results (DCS > 0.90). ConclusionsThe iterative training workflow provides an efficient method for training AI-based segmentation models in multi-center studies, improving accuracy over time and simultaneously reducing human intervention. Future work will explore the use of fewer initial datasets and additional pre-processing methods to enhance model quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.