Abstract

Slow dynamics in supercooled and glassy liquids is an important research topic in soft matter physics. Compared to the traditionally focused one-component systems, glassy dynamics in mixture systems adds in a rich set of new complexities, which are fundamentally interesting and also relevant for many technological applications. In this paper, we apply the recently developed self-consistent cooperative hopping theory (SCCHT) to systematically investigate the effects of the size ratio, composition and interparticle interactions on the cooperative activated hopping dynamics of matrix (in larger size) and penetrant (in smaller size) particles in varied binary sphere mixture model systems, with a specific focus on ultrahigh mixture packing fractions that mimic the deeply supercooled glass transition conditions for molecular/polymeric mixture materials. Analysis shows that in these high activation barrier cases, the long-range elastic distortion associated with a matrix particle hopping over its cage confinement always generates an elastic barrier of a nonnegligible magnitude, although the ratio between the elastic barrier and local barrier contribution is sensitively dependent on all three mixture-specific system factors considered in this work. SCCHT predicts two general scenarios of penetrant-matrix cooperative activated hopping dynamics: matrix/penetrant co-hopping (regime 1) or the penetrant mean barrier hopping time shorter than that of the matrix (regime 2). Increasing the penetrant-to-matrix size ratio or the penetrant-matrix cross-attraction strength is found to universally enlarge the composition window of regime 1. Diverse dynamical properties characterising different aspects of the cooperative activated hopping process, including the penetrant and matrix transient localization lengths, penetrant and matrix hopping jump distances, different types of local and elastic activated barriers, and matrix long-time diffusivity, relaxation time and dynamic fragility are quantitatively studied against a wide range of variations over the three system factors. Of particular interest is the universal "anti-plasticization" phenomenon achievable for sufficiently strong cross-attractive interactions. The prospects this work opens for the exploration of a wide variety of polymer-based mixture materials are briefly discussed at the end.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call