Abstract

The deployment of Small Cells in fourth generation (4G) communication systems is aimed at providing significant capacity improvements and higher availabilities. However, the design of Small Cell systems in indoor environments is especially challenging due to high shadowing attenuation induced by clutter and human blockage. This paper studies node cooperation and multiple relaying and proposes novel analytical formulas for the outage probability of cooperative Small Cells suffering from shadowing. The channel fading gains are modeled as correlated lognormal random variables, in order to reflect the properties of indoor propagation environments. Various cooperative strategies are considered, taking into account the use of one or two relays and different receiver combining techniques. In addition, the relative performance of each cooperative configuration and the benefit of cooperation over non-cooperation are investigated. Finally, interesting and useful insights are produced regarding the impact of the correlated lognormal environment parameters on the configuration of cooperative Small Cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.