Abstract
Cooperation and defection are social traits whose evolutionary origin is still unresolved. Recent behavioral experiments with humans suggested that strategy changes are driven mainly by the individuals' expectations and not by imitation. This work theoretically analyzes and numerically explores an aspiration-driven strategy updating in a well-mixed population playing games. The payoffs of the game matrix and the aspiration are condensed into just two parameters that allow a comprehensive description of the dynamics. We find continuous and abrupt transitions in the cooperation density with excellent agreement between theory and the Gillespie simulations. Under strong selection, the system can display several levels of steady cooperation or get trapped into absorbing states. These states are still relevant for experiments even when irrational choices are made due to their prolonged relaxation times. Finally, we show that for the particular case of the prisoner dilemma, where defection is the dominant strategy under imitation mechanisms, the self-evaluation update instead favors cooperation nonlinearly with the level of aspiration. Thus, our work provides insights into the distinct role between imitation and self-evaluation with no learning dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.