Abstract

The narrow acid pH range and the nonselectivity of the dominant •OH limit the Fenton systems to remediate the organic wastewater. Inspired by the role of heme in physiological processes, we employed iron porphyrin as a novel homogeneous catalyst to address this issue. Multiple active species are identified during the activation of H2O2, including high-valent iron porphyrin ((por)Fe(IV)) species ((por)Fe(IV)–OH, (por)+•Fe(IV)=O) and oxygen-centered radicals (•OH, HO2•/•O2−), as well as atomic hydrogen (*H) and carbon-centered radicals. With the cooperation of these active species, the degradation of pollutants could be resistant to the interference of concomitant ions and proceed over a wide pH range. This cooperative behavior is further verified by intermediates identified from bisphenol A degradation. Specifically, the presence of *H could facilitate the cleavage of the C–C bond and the addition of unsaturated or aromatic molecules. (Por)+•Fe(IV)=O could hydroxylate substrates with an oxygen rebound mechanism. Hydrogen atom abstraction of contaminants could be performed by (por)Fe(IV)–OH to form desaturated products by attacking oxygen-centered radicals. The ecotoxicity of bisphenol A could be significantly decreased through degradation. This study would provide a new approach to wastewater treatment and shed light on the interaction between metalloporphyrin and peroxide in an aqueous solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call