Abstract

The hierarchical SAPO-34 zeolites have been prepared with the simultaneous generation of strong Brønsted acid sites (BASs) via a post-synthetic method, which allows the cooperation of the positive effects of both porous structure and acidity in the dehydration of glycerol to acrolein. The cooperation of strong BASs only in enhancing the acrolein selectivity and the hierarchical pores in improving the glycerol conversion has significantly increased the overall acrolein yield to 89.8% on the hierarchical SAPO-34 zeolite at 345 °C and WHSV = 3.7 h−1. This kind of cooperation also limited the catalyst deactivation and prolonged the lifetime of zeolites, which is another significant challenge for glycerol dehydration. The knowledge from this research is very valuable to design the high-efficient nanoporous catalysts for hydrocarbon conversion and bio-refining.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call