Abstract
BackgroundSulf1 is a cell-surface sulfatase removing internal 6-O-sulfate groups from heparan sulfate (HS) chains. Thereby it modulates the activity of HS-dependent growth factors. For HS interaction Sulf1 employs a unique hydrophilic domain (HD). MethodsAffinity-chromatography, AFM-single-molecule force spectroscopy (SMFS) and immunofluorescence on living cells were used to analyze specificity, kinetics and structural basis of this interaction. ResultsFull-length Sulf1 interacts broadly with sulfated glycosaminoglycans (GAGs) showing, however, higher affinity toward HS and heparin than toward chondroitin sulfate or dermatan sulfate. Strong interaction depends on the presence of Sulf1-substrate groups, as Sulf1 bound significantly weaker to HS after enzymatic 6-O-desulfation by Sulf1 pretreatment, hence suggesting autoregulation of Sulf1/substrate association. In contrast, HD alone exhibited outstanding specificity toward HS and did not interact with chondroitin sulfate, dermatan sulfate or 6-O-desulfated HS. Dynamic SMFS revealed an off-rate of 0.04/s, i.e., ~500-fold higher than determined by surface plasmon resonance. SMFS allowed resolving the dynamics of single dissociation events in each force–distance curve. HD subdomain constructs revealed heparin interaction sites in the inner and C-terminal regions of HD. ConclusionsSpecific substrate binding of Sulf1 is mediated by HD and involves at least two separate HS-binding sites. Surface plasmon resonance KD-values reflect a high avidity resulting from multivalent HD/heparin interaction. While this ensures stable cell–surface HS association, the dynamic cooperation of binding sites at HD and also the catalytic domain enables processive action of Sulf1 along or across HS chains. General significanceHD confers a novel and highly dynamic mode of protein interaction with HS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.