Abstract

This paper addresses fundamental issues in a shared channel where the users have different priority levels. In particular, we study a two-user cognitive shared channel consisting of a primary (higher-priority) and a secondary user, operating in the cognitive underlay fashion, but in a novel way where interference suffered by the primary user is compensated by requiring the secondary user to cooperatively relay some of the primary's packets. We start by analyzing the case of no node cooperation, where nodes transmit their own packets to their respective destinations. We then extend the analysis to a system in which the secondary node acts as a relay for the primary user, in addition to serving its own packets. Specifically, in the cognitive cooperation case, the secondary node forwards those packets to the primary destination that it receives successfully from the primary source. In such cognitive shared channels, a tradeoff arises in terms of activating the secondary along with the primary so that both transmissions may be successful, but with a lower probability, compared to the case of the secondary node staying idle when the primary user transmits. Results show the benefits of relaying for both the primary as well as the secondary nodes in terms of the stable-throughput region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.