Abstract
In human society, learning is essential to intelligent behavior. However, people do not need to learn everything from scratch by their own discovery. Instead, they exchange information and knowledge with one another and learn from their peers and teachers. When a task is too complex for an individual to handle, one may cooperate with its partners in order to accomplish it. Like human society, cooperation exists in the other species, such as ants that are known to communicate about the locations of food and move it cooperatively. Using the experience and knowledge of other agents, a learning agent may learn faster, make fewer mistakes, and create rules for unstructured situations. In the proposed learning algorithm, an agent adapts to comply with its peers by learning carefully when it obtains a positive reinforcement feedback signal, but should learn more aggressively if a negative reward follows the action just taken. These two properties are applied to develop the proposed cooperative learning method conceptually. The algorithm is implemented in some cooperative tasks and demonstrates that agents can learn to accomplish a task together efficiently through a repetitive trials.KeywordsMulti-agentCooperationSharingReinforcement learningmobile robot
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.