Abstract
Low density lipoproteins (LDL) are an independent risk factor for atherosclerosis and show synergism with some growth factors in vascular smooth muscle cell (VSMC) proliferation. IGF-I has mitogenic actions on VSMC, which, in turn, show enhanced expression of IGF-I and its receptor when exposed to hypercholesterolemic diets in vivo. To investigate the molecular basis of a possible interaction between LDL and the IGF-I signaling system in VSMC, we used A10 cells, where synergism between both factors in DNA synthesis was demonstrated. IGF-I activates phosphatidylinositol 3-kinase (PI3 kinase) and extracellular signal-regulated MAPK pathways in A10 cells, although insulin receptor substrate-1 (IRS-1)-associated PI3 kinase is more closely linked to IGF-I induced proliferation. LDL, in pathophysiological concentrations, affect the IGF-I signaling pathway at multiple levels: 1) they induce phosphorylation of IGF-I receptor beta and IRS-1 in a time- and dose-dependent manner; 2) they up-regulate IRS-1-associated PI3 kinase/Akt activation in response to IGF-I at early times; and 3) they show additive effects with IGF-I on extracellular signal-regulated MAPK 1/2 phosphorylation. These actions are not present in very low density lipoprotein treatments. Taken together, these results indicate specific cooperation between LDL and the IGF-I signaling pathways and may represent a more general mechanism through which proatherogenic lipoproteins modulate VSMC response to growth factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.