Abstract

The increasing number of radio access technologies and the availability of multi-radio devices boost the need for novel resource allocation schemes in cellular networks. This paper uses a cooperative game theoretic approach for resource allocation at the network level, while utilizing simultaneous use of available radio interfaces at the device level. We model resource allocation management using the well known bankruptcy model and apply Kalai-Smorodinsky bargaining solution method to find a distribution rule, based on which we propose resource allocation and call admission control schemes. Performance analysis of our allocation and control schemes demonstrates significant improvements over previous approaches in terms of utilization of the available bandwidth and the number of call drops. We also study the performance of proposed approach for different operator policies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.