Abstract
Direct reciprocity and conditional cooperation are important mechanisms to prevent free riding in social dilemmas. However, in large groups, these mechanisms may become ineffective because they require single individuals to have a substantial influence on their peers. However, the recent discovery of zero-determinant strategies in the iterated prisoner's dilemma suggests that we may have underestimated the degree of control that a single player can exert. Here, we develop a theory for zero-determinant strategies for iterated multiplayer social dilemmas, with any number of involved players. We distinguish several particularly interesting subclasses of strategies: fair strategies ensure that the own payoff matches the average payoff of the group; extortionate strategies allow a player to perform above average; and generous strategies let a player perform below average. We use this theory to describe strategies that sustain cooperation, including generalized variants of Tit-for-Tat and Win-Stay Lose-Shift. Moreover, we explore two models that show how individuals can further enhance their strategic options by coordinating their play with others. Our results highlight the importance of individual control and coordination to succeed in large groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.