Abstract

Cooperation and competition are natural laws that regulate the interactions between agents in numerous physical, or social phenomena. By analogy, we transpose these laws to devise e cient multi-objective algorithms applied to shape optimization problems involving two or more disciplines. Two e cient strategies are presented in this paper: a multiple gradient descent algorithm (MGDA) and a Nash game strategy based on an original split of territories between disciplines. MGDA is a multi-objective extension of the steepest descent method. The use of a gradient-based algorithm that exploits the cooperation principle aims at reducing the number of iterations required for classical multi-objective evolutionary algorithms to converge to a Pareto optimal design. On the other hand side, the Nash game strategy is well adapted to typical aeronautical optimization problems, when, after having optimized a preponderant or fragile discipline (e.g. aerodynamics), by the minimization of a primary objective-function, one then wishes to reduce a secondary objective-function, representative of another discipline, in a process that avoids degrading excessively the original optimum. Presently, the combination of the two approaches is exploited, in a method that explores the entire Pareto front. Both algorithms are rst analyzed on analytical test cases to demonstrate their main features and then applied to the optimum-shape design of a low-boom/low-drag supersonic business jet design problem. Indeed, sonic boom is one of the main limiting factors to the development of civil supersonic transportation. As the driving design for low-boom is not compliant with the low-drag one, our goal is to provide a trade-o between aerodynamics and acoustics. Thus Nash games are adopted to de ne a low-boom con guration close to aerodynamic optimality w.r.t. wave drag.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call