Abstract

AbstractInvestigations of tectonic and surface processes have shown a clear relationship between climate‐influenced erosion and long‐term exhumation of rocks. Numerical models suggest that most orogens are in a transient state, but observational evidence of a spatial shift in mountain building processes due to tectonic‐climate interaction is missing. New thermochronology data synthesized with geophysical and surface process data elucidate the evolving interplay of erosion and tectonics of the colliding Yakutat microplate with North America. Focused deformation and rock exhumation occurred in the apex of the colliding plate corner from > 4 to 2 Ma and shifted southward after the 2.6 Ma climate change. The present exhumation maximum coincides with the largest modern shortening rates, highest concentration of seismicity, and the greatest erosive potential. We infer that the high sedimentation caused rheological modification and the emergence of the southern St. Elias, intercepting orographic precipitation and shifting focused erosion and exhumation to the south.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.