Abstract

Cable robots form a class of parallel architecture robots with significant benefits including simplicity of construction, large workspace, significant payload capacity and end effector stiffness. While conventional cable robots have fixed bases, we seek to explore inclusion of mobility into the bases (in the form of gantries, and/or vehicle bases) which can significantly further enhance the capabilities of cable robots. However, this also introduces redundancy and complexity into the system which needs to be carefully analyzed and resolved. To this end, we propose a generalized modeling framework for systematic design and analysis of cooperative mobile cable robots, building upon knowledge base of multi-fingered grasping, and illustrate it with a case study of four cooperating gantry mounted cable robots transporting a planar payload.We show its wrench closure workspace and reconfiguration to extend the workspace, as well as redundancy resolution by optimally repositioning the bases to maximize tension factor along a given trajectory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.