Abstract

Cooperate epidemic spreading dynamics has attracted much attention from the field of network science. In this paper, we study the cooperate epidemic spreading dynamics on multiplex networks with heterogeneous populations, which induces the heterogeneous coinfection susceptibility. We propose a spreading model to describe the evolution mechanisms. To predict the final state of the epidemic outbreak size, a generalized bond percolation theory is suggested. Through numerical simulations and theoretical analyses, we find that the system exhibits a discontinuous phase transition for large average and small variance of the distribution of coinfection susceptibility on ER–ER multiplex networks, while the phase transition is continuous on SF–SF networks. In addition, the final outbreak size increases with the average coinfection susceptibility and decreases with the variance of the coinfection susceptibility. Our suggested bond percolation theory can well predict the numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.