Abstract
We present an ab initio determination of the spin response of the unitary Fermi gas. Based on finite temperature quantum Monte Carlo calculations and the Kubo linear-response formalism, we determine the temperature dependence of the spin susceptibility and the spin conductivity. We show that both quantities exhibit suppression above the critical temperature of the superfluid-to-normal phase transition due to Cooper pairing. The spin diffusion transport coefficient does not display a minimum in the vicinity of the critical temperature and drops to very low values D(s)≈0.8ħ/m in the superfluid phase. All these spin observables show a smooth and monotonic behavior with temperature when crossing the critical temperature T(c), until the Fermi liquid regime is attained at the temperature T(*), above which the pseudogap regime disappears.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.