Abstract
We describe cooling of the center-of-mass (c.o.m.) motion of silica microspheres using the morphology dependent whispering gallery mode (WGM) resonances excited by light coupled from a tapered optical fibre. This scheme uses passive cooling via the velocity dependent scattering force from the excitation of WGM resonances in one direction1 and active feedback cooling via cavity enhanced optical dipole forces (CEODF)2 along a perpendicular axis. Initial experiments have shown successful laser frequency locking to a WGM using relatively high coupled powers despite thermal bistability and thermally induced frequency shifts in the WGM. We also demonstrate the optomechanical transduction required for feedback by monitoring the transmission through the tapered fibre, demonstrating the ability to resolve displacements of less than a nanometer and velocities less than 40X10<sup>-6</sup> ms<sup>-1</sup>.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.