Abstract
Cooling of electronics is normally achieved using air passing through apertures in the enclosure; as a result the shielding effectiveness of the shielded enclosure is reduced. In this paper, the design of a new cooling structure and its evaluation in a wind tunnel is presented. The developed design presented here is a double heat sink in extruded aluminum. Into one side of the heat sink, the printed circuit boards (PCBs) are inserted and enclosed by a complementary shielding surface. The other side of the heat sink is cooled by forced ventilation. The heat transport between these parts is completely inside the same body, without any heat flow interruptions. Tests carried out on a prototype have shown that the performance of the cooling structure is satisfactory for electronic cooling. An additional electromagnetic compatibility (EMC)-test has also elucidated the satisfactory shielding effectiveness of the structure. The cooling structure is scaleable and can accommodate for both future smaller printed circuit boards (PCBs) and those of today. The entire enclosure is furthermore based on near-standard items, which allows it to be inexpensive in high volume production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Components and Packaging Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.