Abstract

1. 1. In a helium atmosphere, heat is dissipated from a surface 3.5 times faster than it is in air. Eggs in a helium-oxygen atmosphere cool only 1.4 times faster than they cool in air. This signifies that internal resistance to heat flow is a significant factor in the cooling rates of eggs. 2. 2. Heat flow occurs inside an egg in two ways: by conduction through the tissues and in flowing blood. Killing an embryo stops the latter, but not the former. Eggs cool more slowly after they have been killed, signifying that blood flow can be an important component in an egg's internal flows of heat. 3. 3. Blood flow should be a relatively more important component of heat flow in large eggs than in small eggs. The difference in conductance between living and killed eggs is larger in 60 g chicken eggs than it is in 10 g quail eggs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call