Abstract
It is known that cooling rate can affect the atomic structure and thus may possibly affect the mechanical properties of metallic glasses (MGs). In spite of the considerable efforts on the cooling rate, its effect on the mechanical properties is controversial at the present time. In this study, we present a micromechanical study of the cooling-rate effect on Young's moduli and hardness of the cast bulks and melt-spun ribbons for a Zr 55Pd 10Cu 20Ni 5Al 10 metallic glass. Using the classic nanoindentation method, the Young's moduli of the ribbon samples obtained at higher cooling rates were measured which appeared to be much lower than those of the bulk samples. However, through further experiments on slice samples cut from the as-cast bulks and finite-element (FE) analyses, we have clearly demonstrated that the measured difference in elastic moduli was mainly caused by the sample thickness effect in nanoindentation tests. To overcome such a confounding effect, microcompression experiments were performed on the as-cast and as-spun MG samples, respectively. Being consistent with the findings from nanoindentation, the microcompression results showed that the cooling rate, as ranging from ∼10 2 to ∼10 6 K/s, essentially has no influence on the Young's modulus and hardness of the metallic glasses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.