Abstract

The polymorph selection during rapid solidification of zinc melt was investigated by molecular dynamics simulation. Several methods including g(r), energy, CNS, basic cluster and visualization were used to analyze the results. The results reveal that the cooling rate has no observable effect on the microstructure as T>Tc(Tc is the onset temperature of crystallization); and at the first stage of crystallization, although microstructures are different, the morphologies of nucleus are similar, which are composed of HCP and FCC layers; the polymorph selection of cooling rate finally takes place at the second stage of crystallization: at a high cooling rate, the rapid increase of FCC atoms leads to a FCC crystal mixed with less HCP structures; while at a low cooling rate, HCP atoms grow at the expense of FCC atoms, resulting in an almost perfect HCP phase. The results reveal that the cooling rate is one of the important factors for polymorph selection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call