Abstract
The influence of the cooling rate on paleointensity estimates was investigated for samples from a vertical profile across a 600 A.D. obsidian lava flow ramp from Lipari, Italy. The natural cooling rates at the glass transition, which were previously determined for the seven investigated samples by relaxation geospeedometry, vary by a factor of more than 4. Rock magnetic investigations indicate a magnetic microlite fraction in the single-domain grain size range and strong magnetic anisotropy. The thermoremanence anisotropy tensor was determined for each specimen to correct the paleointensity results for this anisotropy. The cooling rate dependency of the thermoremanence was determined experimentally. Extrapolation to natural cooling rates indicate an overestimate of the paleointensity by 13% to 20% during experiments with typical laboratory cooling rates. Correcting for the different cooling rates and the cooling rate dependencies within the vertical profile, significantly reduces the standard deviation of the average flow paleointensity. The average paleointensity for the 543 ± 19 A.D. flow ramp results in 52.4 ± 1.1 μT, corresponding to a virtual axial dipole moment of 9.2 ± 0.2 Am2. Uncertainties, introduced by anisotropy correction and cooling rate extrapolation, are considered by error propagation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.