Abstract
Thermal energy storage materials for transient thermal management applications must exhibit large energy storage densities as well as large cooling/heating power densities. The latter property has proven difficult to quantify on a materials basis because it depends on extrinsic effects. Here, we apply a previously defined cooling power figure of merit, a measure of a material’s intrinsic capacity to absorb a transient heat pulse, to analyze composite phase change material heatsinks and insulants. The results demonstrate important limits on the effects of high- and low-conductivity component volume fractions, orientations, and the critical lengthscales of individual components. Champion composites are predicted to have up to 5 times greater figure of merit than pure high-conductivity materials and up to 30 times greater figure of merit than pure phase change materials. Furthermore, composites consisting of insulating materials containing dispersed phase change materials are predicted to exhibit an order of magnitude increase in their characteristic response time. These results demonstrate the utility of the cooling power figure of merit to design compact high power and energy density heatsink and insulant materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.