Abstract
This article reports convective single-phase heat transfer performance in laminar flow for some selected nanofluids (NFs) in an open small diameter test section. A 0.50mm inner diameter, 30cm long stainless steel test section was used for screening single phase laminar convective heat transfer with water and five different water based NFs. Tested NFs were; Al2O3 (two types), TiO2 (two types) and CeO2 (one type), all 9wt.% particle concentration. The effective thermal conductivity of the NFs were measured with Transient Plane Source (TPS) method and viscosity were measured with a rotating coaxial cylindrical viscometer. The obtained experimental results for thermal conductivity were in good agreement with the predicted values from Maxwell equation. The local Shah correlation, which is conventionally used for predicting convective heat transfer in laminar flow in Newtonian fluids with constant heat flux boundary condition, was shown to be valid for NFs. Moreover, the Darcy correlation was used to predict the friction factor for the NFs as well as for water. Enhancement in heat transfer for NFs was observed, when compared at equal Reynolds number, as a result of higher velocity or mass flow rate of the NFs at any given Reynolds number due to higher viscosity for NFs. However, when compared at equal pumping power no or only minor enhancement was observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.