Abstract
In this paper, the cooling performance of water-cooled heat sinks for heat dissipation from electronic components is investigated numerically. Computational Fluid Dynamics (CFD) simulations are carried out to study the rectangular and circular cross-sectional shaped heat sinks. The sectional geometry of channels affects the flow and heat transfer characteristics of minichannel heat sinks. The three-dimensional governing equations in steady state and laminar flow are solved using Finite Volume Method (FVM) with the SIMPLE algorithm. The results show that the numerical simulation is in good agreement with the experimental data. The thermal and hydrodynamic characteristics of the heat sinks including Nusselt number, friction factor, thermal resistance and pumping power for various geometries of heat sinks are discussed in details. The results indicate that the heat sink with rectangular cross-section has a better heat transfer rate and the circular channel heat sink has the lower pumping power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Iranian Journal of Chemistry & Chemical Engineering-international English Edition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.