Abstract

We show that the vibrations of a nanomechanical resonator can be cooled to near its quantum ground state by tunneling injection of electrons from a scanning tunneling microscope tip. The interplay between two mechanisms for coupling the electronic and mechanical degrees of freedom results in a bias-voltage-dependent difference between the probability amplitudes for vibron emission and absorption during tunneling. For a bias voltage just below the Coulomb blockade threshold, we find that absorption dominates, which leads to cooling corresponding to an average vibron population of the fundamental bending mode of 0.2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call