Abstract
Abstract Heat transfer analysis has been carried out in the Magnetohydrodynamic (MHD) boundary layer formed near the wavy rough plate moving in x-direction. Due to the presence of metallic nanoparticle in the fluid and enhanced surface area of the plate as a consequence of surface texture, an increase in heat transfer rates is expected. However, the calculation of these enhanced rates of heat transfer is not straightforward because the convection phenomena become more complicated due to the motion of nanoparticle in the base fluid and also the waviness of the plate surface. The contribution of nanoparticle toward convective heat transfer is manifold which requires a suitable model in order to capture the correct physics. Famous Tiwari and Das model has been utilised in the current study. Percent increase in the rate of heat transfer is calculated for the nanoparticle of different metals, such as MWCNT, SWCNT, Al2O3, TiO2 and Ag. Appreciable increase in the rate of heat transfer is observed, which is 24% at the most for Al2O3 nanoparticle. The effect of applied magnetic field on the velocity profile, skin friction coefficient, and Nusselt number has also been presented through graphs. The concentration of the nanoparticle has been limited up to 10%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.