Abstract

We propose a model describing $N$ spin-1/2 systems coupled through $N$-order homogeneous interaction terms, in presence of local time-dependent magnetic fields. This model can be experimentally implemented with current technologies in trapped ions and superconducting circuits. By introducing a chain of unitary transformations, we succeed in exactly converting the quantum dynamics of this system into that of $2^{N-1}$ fictitious spin-1/2 dynamical problems. We bring to light the possibility of controlling the unitary evolution of the $N$ spins generating GHZ states under specific time-dependent scenarios. Moreover, we show that by appropriately engineering the time-dependence of the coupling parameters, one may choose a specific subspace in which the $N$-spin system dynamics takes place. This dynamical feature, which we call time-dependent selective interaction, can generate a cooling effect of all spins in the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.