Abstract

X-ray images and spectra of clusters of galaxies show strong evidence for cooling flows. In many clusters, the hot gas in the core is cooling at rates of ∼ 100M⊙yr−1 and greater. Few traces of the cooled gas have been observed, but it probably forms into low-mass stars (perhaps brown dwarf or even Jupiter-mass objects). X-ray surface-brightness profiles show that the cooling gas is highly inhomogeneous. Overdense gas cools rapidly to form cooled clumps distributed throughout the flow, with little of the gas ever reaching the cluster centre. Cooled and cooling clumps are disrupted because of their motion relative to the remainder of the gas, tending to produce small cooled fragments and, ultimately, low-mass stars. Large molecular clouds, which are the sites of massive star formation in our galaxy, do not occur in the outer parts of cooling flows. There is evidence of larger gas clumps and the formation of more massive stars in the central few kpc of some cooling flows. It is argued that cooling flows efficiently form dark matter. This has wider implications for the formation of dark matter in massive galaxies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call